The function ECOS_csolve
is a wrapper around the ecos
csolve
C function. Conic constraints are specified using the
\(G\) and \(h\) parameters and can be NULL
and zero
length vector respectively indicating an absence of conic
constraints. Similarly, equality constraints are specified via
\(A\) and \(b\) parameters with NULL
and empty vector
values representing a lack of such constraints. At most one of the
pair \((G , h)\) or \((A, b)\) is allowed to be absent.
the coefficients of the objective function; the length of this determines the number of variables \(n\) in the problem.
the inequality constraint matrix in one of three forms: a
plain matrix, simple triplet matrix, or compressed column
format, e.g. dgCMatrix-class. Can also be
NULL
the right hand size of the inequality constraint. Can be empty numeric vector.
is a list of three named elements: dims['l']
an
integer specifying the dimension of positive orthant cone,
dims['q']
an integer vector specifying dimensions of
second-order cones, dims['e']
an integer specifying the
number of exponential cones
the optional equality constraint matrix in one of three
forms: a plain matrix, simple triplet matrix, or compressed
column format, e.g. dgCMatrix-class. Can be
NULL
the right hand side of the equality constraint, must be specified if \(A\) is. Can be empty numeric vector.
the indices of the variables, 1 through \(n\), that are boolean; that is, they are either present or absent in the solution
the indices of the variables, 1 through \(n\), that are integers
is a named list that controls various optimization parameters; see ecos.control.
a list of 8 named items
primal variables
dual variables for equality constraints
slacks for \(Gx + s <= h\), \(s \in K\)
dual variables for inequality constraints \(s \in K\)
gives information about the status of solution
a named integer vector containing four elements
0=ECOS_OPTIMAL
, 1=ECOS_PINF
,
2=ECOS_DINF
, 10=ECOS_INACC_OFFSET
, -1=ECOS_MAXIT
,
-2=ECOS_NUMERICS
, -3=ECOS_OUTCONE
, -4=ECOS_SIGINT
,
-7=ECOS_FATAL
. See ECOS_exitcodes
the number of iterations used
the number of iterations for mixed integer problems
a non-zero number if a numeric error occurred
a named numeric vector containing
value of primal objective
value of dual objective
primal residual on inequalities and equalities
dual residual
primal infeasibility measure
dual infeasibility measure
primal infeasibility residual
dual infeasibility residual
duality gap
relative duality gap
Unknown at the moment to this R package maintainer.
a named numeric vector of timing information consisting of
the total runtime in ecos
the time for setup of the problem
the time to solve the problem
A call to this function will solve the problem: minimize \(c^Tx\), subject to \(Ax = b\), and \(h - G*x \in K\).
Variables can be constrained to be boolean (1 or 0) or integers. This is indicated
by specifying parameters bool_vars
and/or int_vars
respectively. If so
indicated, the solutions will be found using a branch and bound algorithm.
## githubIssue98
cat("Basic matrix interface\n")
#> Basic matrix interface
Gmat <- matrix(c(0.416757847405471, 2.13619609566845, 1.79343558519486, 0, 0,
0, 0, -1, 0, 0, 0, 0.056266827226329, -1.64027080840499, 0.841747365656204,
0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0.416757847405471, 2.13619609566845,
1.79343558519486, 0, 0, 0, -1, 0, 0, 0, 0, 0.056266827226329, -1.64027080840499,
0.841747365656204, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0), ncol = 5L)
c <- as.numeric(c(0, 0, 0, 0, 1))
h <- as.numeric(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
dims <- list(l = 6L, q = 5L, e = 0L)
ECOS_csolve(c = c, G = Gmat, h = h,
dims = dims,
A = NULL, b = numeric(0))
#> $x
#> [1] 1.479062e-11 4.332909e-12 1.478861e-11 4.273179e-12 -3.372330e-10
#>
#> $y
#> numeric(0)
#>
#> $s
#> [1] 5.007707e-11 2.112317e-10 1.720096e-10 5.008123e-11 2.111387e-10
#> [6] 1.720630e-10 2.502815e-10 1.887750e-11 4.007416e-12 1.887598e-11
#> [11] 4.038335e-12
#>
#> $z
#> [1] 0.36678432 0.07561476 0.09859791 0.36678392 0.07561520 0.09859751
#> [7] 1.00000000 0.49121720 -0.02039636 0.49121725 -0.02039743
#>
#> $infostring
#> [1] "Optimal solution found"
#>
#> $retcodes
#> exitFlag iter mi_iter numerr
#> 0 6 -1 0
#>
#> $summary
#> pcost dcost pres dres pinf
#> -3.372330e-10 0.000000e+00 4.264405e-10 5.482329e-11 0.000000e+00
#> dinf pinfres dinfres gap relgap
#> 0.000000e+00 NaN NaN 1.738783e-09 5.156029e+00
#> r0
#> 1.000000e-08
#>
#> $timing
#> runtime tsetup tsolve
#> 5.2298e-05 2.0759e-05 3.1539e-05
#>
cat("Simple Triplet Matrix interface, if you have package slam\n")
#> Simple Triplet Matrix interface, if you have package slam
if (requireNamespace("slam")) {
ECOS_csolve(c = c, G = slam::as.simple_triplet_matrix(Gmat), h = h,
dims = dims,
A = NULL, b = numeric(0))
}
#> Loading required namespace: slam
#> $x
#> [1] 1.479062e-11 4.332909e-12 1.478861e-11 4.273179e-12 -3.372330e-10
#>
#> $y
#> numeric(0)
#>
#> $s
#> [1] 5.007707e-11 2.112317e-10 1.720096e-10 5.008123e-11 2.111387e-10
#> [6] 1.720630e-10 2.502815e-10 1.887750e-11 4.007416e-12 1.887598e-11
#> [11] 4.038335e-12
#>
#> $z
#> [1] 0.36678432 0.07561476 0.09859791 0.36678392 0.07561520 0.09859751
#> [7] 1.00000000 0.49121720 -0.02039636 0.49121725 -0.02039743
#>
#> $infostring
#> [1] "Optimal solution found"
#>
#> $retcodes
#> exitFlag iter mi_iter numerr
#> 0 6 -1 0
#>
#> $summary
#> pcost dcost pres dres pinf
#> -3.372330e-10 0.000000e+00 4.264405e-10 5.482329e-11 0.000000e+00
#> dinf pinfres dinfres gap relgap
#> 0.000000e+00 NaN NaN 1.738783e-09 5.156029e+00
#> r0
#> 1.000000e-08
#>
#> $timing
#> runtime tsetup tsolve
#> 4.4032e-05 1.4567e-05 2.9465e-05
#>
if (requireNamespace("Matrix")) {
ECOS_csolve(c = c, G = Matrix::Matrix(Gmat), h = h,
dims = dims,
A = NULL, b = numeric(0))
}
#> Loading required namespace: Matrix
#> $x
#> [1] 1.479062e-11 4.332909e-12 1.478861e-11 4.273179e-12 -3.372330e-10
#>
#> $y
#> numeric(0)
#>
#> $s
#> [1] 5.007707e-11 2.112317e-10 1.720096e-10 5.008123e-11 2.111387e-10
#> [6] 1.720630e-10 2.502815e-10 1.887750e-11 4.007416e-12 1.887598e-11
#> [11] 4.038335e-12
#>
#> $z
#> [1] 0.36678432 0.07561476 0.09859791 0.36678392 0.07561520 0.09859751
#> [7] 1.00000000 0.49121720 -0.02039636 0.49121725 -0.02039743
#>
#> $infostring
#> [1] "Optimal solution found"
#>
#> $retcodes
#> exitFlag iter mi_iter numerr
#> 0 6 -1 0
#>
#> $summary
#> pcost dcost pres dres pinf
#> -3.372330e-10 0.000000e+00 4.264405e-10 5.482329e-11 0.000000e+00
#> dinf pinfres dinfres gap relgap
#> 0.000000e+00 NaN NaN 1.738783e-09 5.156029e+00
#> r0
#> 1.000000e-08
#>
#> $timing
#> runtime tsetup tsolve
#> 5.6025e-05 2.4145e-05 3.1880e-05
#>
## Larger problems using saved data can be found in the test suite.
## Here is one
if (requireNamespace("Matrix")) {
MPC01 <- readRDS(system.file("testdata", "MPC01_1.RDS", package = "ECOSolveR"))
G <- Matrix::sparseMatrix(x = MPC01$Gpr, i = MPC01$Gir, p = MPC01$Gjc,
dims = c(MPC01$m, MPC01$n), index1 = FALSE)
h <- MPC01$h
dims <- lapply(list(l = MPC01$l, q=MPC01$q, e=MPC01$e), as.integer)
retval <- ECOS_csolve(c = MPC01$c, G=G, h = h, dims = dims, A = NULL, b = NULL,
control = ecos.control(verbose=1L))
retval$retcodes
retval$infostring
retval$summary
}
#> pcost dcost pres dres pinf
#> -2.112370e+02 -2.112370e+02 2.387958e-12 7.134616e-13 0.000000e+00
#> dinf pinfres dinfres gap relgap
#> 0.000000e+00 NaN 4.964435e-01 1.111838e-06 5.263464e-09
#> r0
#> 1.000000e-08